Published date20 January 2005
Date20 January 2005
Adamic, L.A. and B.A. Huberman (2001). The Web's hidden order. Communications of the
ACM, 44(9), 55-60.
Adamic, L.A. and B. Huberman (2002). Zipf
law and the Internet. Glottometrics, 3, 143-150.
Adamic, L.A., R.M. Lukose, A.R. Puniyani and B.A. Huberman (2001). Search in power-law
networks. Physical Review E, 64, 46135-46143.
Aida, M., N. Takahashi and T. Abe (1998). A proposal of dual Zipfian model for describing
HTTP access trends and its application to address cache design. IEICE Transactions on
Communication, E81-B(7), 1475-1485.
Ajiferuke, I. (1991). A probabilistic model for the distribution of authorships. Journal of the
American Society for Information Science, 42(4), 279-289.
Albert, R., H. Jeong and A.-L. Barabasi (1999). Diameter of the World-Wide Web. Nature, 401,
Allison, P.D., D. De Solla Price, B.C. Griffith, M.J. Moravcsik and J.A. Stewart (1976). Lotka's
law: a problem in its interpretation and application. Social Studies of Science, 6, 269-
Alvarado, R.U. (1999). La ley de Lotka y la literatura de bibliometria. Investigation
Bibliotecologica, 13(27),
Anderson, R.B. and R.D. Tweney (1997). Artifactual power curves in forgetting. Memory and
Cognition, 25(5), 724-730.
Apostol, T.M. (1957). Mathematical Analysis. A modern Approach to advanced Calculus.
Addison-Wesley, Reading (MA), USA.
(1982). A variational approach to frequency-rank distributions of text elements. In:
Studies on Zipf
Law (H. Guiter and
Arapov, eds.). Quantitative Linguistics, Vol.
29-52, Studienverlag Dr. N. Brockmeyer, Bochum, Germany.
Atkinson, A.B. (1970). On the measurement of inequality. Journal of Economic Theory, 2,244-
Axtell, R.L. (2001). Zipf distribution of
firm sizes. Science, 293, 1818-1820.
Baayen, R.H. (2001). Word Frequency Distributions. Kluwer Academic Publishers, Dordrecht,
the Netherlands.
398 Power laws in the information production process: Lotkaian informetrics
Balasubrahmanyan, V.K. and S. Naranan (2002). Algorithmic information, complexity and Zipf s
law. Glottometrics, 4, 1-26.
Barabasi, A.-L. and R. Albert (1999). Emergence of scaling in random networks. Science, 286,
Barabasi, A.-L., R. Albert and H. Jeong (2000). Scale-free characteristics of random networks:
the topology of the world-wide-web. Physica A, 281, 69-77.
Barabasi, A.-L., H. Jeong, Z. Neda, E. Ravasz, A. Schubert and T. Vicsek (2002). Evolution of
the social network of scientific collaborations. Physica A, 311, 590-614.
Bashkirov, A.G. and
Vityazev (2000). Information entropy and power-law distributions for
chaotic systems. Physica A, 277, 136-145.
Batty, M. (2003). The emergence of cities: complexity and urban dynamics.
Benford, F. (1938). The law of anomalous numbers. Proceedings of the American Mathematical
Society, 78, 551-572.
Bensman, S.J. (1982). Bibliometric laws and library usage as social phenomena. Library
Research, 4, 279-312.
Berg, J. and R.Wagner-Dobler (1996). A multidimensional analysis of scientific dynamics. Part I.
Case studies of mathematical logic in the
century. Scientometrics, 35(3), 321-346.
Bilke, S. and C. Peterson (2001). Topological properties of citation and metabolic networks.
Physical Review E, 6403(3), 76-80.
Blackert, L. and S. Siegel (1979). 1st in der wissenschaftlich-technischen Information Platz fur
die Informetrie? Wissenschaftliches Zeitschrift TH Ilmenau, 25(6), 187-199.
Blair, D.C. (1990). Language and
in Information Retrieval. Elsevier, Amsterdam,
the Netherlands.
Blom, G. (1989). Probability and Statistics. Theory and Applications. Springer-Verlag, New
York, USA.
Bogaert, J., R. Rousseau and P. Van Hecke (2000). Percolation as a model for informetrie
distributions: fragment size distribution characterised by Bradford curves.
Scientometrics, 47(2), 195-206.
Bollobas, B. (1985). Random graphs. Academic Press, London, UK.

To continue reading

Request your trial

VLEX uses login cookies to provide you with a better browsing experience. If you click on 'Accept' or continue browsing this site we consider that you accept our cookie policy. ACCEPT